#239 Fear and Loathing (3-21)

avg: 478.37  •  sd: 70.65  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
80 Alchemy** Loss 5-13 653.48 Ignored Jun 29th Truckee River Ultimate Cooldown 2019
36 Garage Sale** Loss 5-13 963.38 Ignored Jun 29th Truckee River Ultimate Cooldown 2019
163 VU Loss 9-11 621.59 Jun 29th Truckee River Ultimate Cooldown 2019
95 Platypi** Loss 4-13 578.4 Ignored Jun 29th Truckee River Ultimate Cooldown 2019
108 Argo Loss 11-12 1016.92 Jun 30th Truckee River Ultimate Cooldown 2019
299 Delta Breeze Win 15-5 600 Ignored Jun 30th Truckee River Ultimate Cooldown 2019
179 Long Beach Legacy Win 11-8 1139.43 Aug 3rd 4th Annual Coconino Classic 2019
143 Superstition Loss 10-11 825.28 Aug 3rd 4th Annual Coconino Classic 2019
60 Rubix Loss 3-7 764.9 Aug 3rd 4th Annual Coconino Classic 2019
198 Birds of Paradise Loss 10-13 370.12 Aug 4th 4th Annual Coconino Classic 2019
246 Rogue Win 11-4 1053.95 Aug 4th 4th Annual Coconino Classic 2019
116 Absolute Zero** Loss 4-13 504.82 Ignored Aug 24th Ski Town Classic 2019
80 Alchemy** Loss 5-13 653.48 Ignored Aug 24th Ski Town Classic 2019
158 Sweet Action Loss 9-13 484.77 Aug 24th Ski Town Classic 2019
44 Pivot** Loss 1-13 900.13 Ignored Aug 24th Ski Town Classic 2019
189 The Strangers Loss 3-13 120.83 Aug 25th Ski Town Classic 2019
134 Mixed Signals Loss 8-13 517.07 Aug 25th Ski Town Classic 2019
106 California Burrito** Loss 3-15 548.22 Ignored Sep 7th So Cal Mixed Club Sectional Championship 2019
179 Long Beach Legacy Loss 6-15 173.82 Sep 7th So Cal Mixed Club Sectional Championship 2019
44 Pivot** Loss 2-15 900.13 Ignored Sep 7th So Cal Mixed Club Sectional Championship 2019
143 Superstition Loss 10-12 712.16 Sep 7th So Cal Mixed Club Sectional Championship 2019
198 Birds of Paradise Loss 6-13 98.26 Sep 8th So Cal Mixed Club Sectional Championship 2019
176 Spoiler Alert Loss 3-13 181.43 Sep 8th So Cal Mixed Club Sectional Championship 2019
246 Rogue Loss 6-13 -146.05 Sep 8th So Cal Mixed Club Sectional Championship 2019
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)