#241 Humboldt State (2-9)

avg: 757.23  •  sd: 108.68  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
74 Lewis & Clark** Loss 4-15 890.93 Ignored Jan 21st Pacific Confrontational Pac Con
32 Oregon State** Loss 2-15 1205.73 Ignored Jan 21st Pacific Confrontational Pac Con
137 Portland State Loss 9-15 708.68 Jan 22nd Pacific Confrontational Pac Con
125 Washington State Loss 11-15 887.02 Jan 22nd Pacific Confrontational Pac Con
253 Oregon State-B Loss 4-9 117.62 Jan 22nd Pacific Confrontational Pac Con
179 Loyola Marymount Loss 6-10 536.57 Feb 4th Stanford Open
180 Nevada-Reno Loss 6-12 450.7 Feb 4th Stanford Open
221 California-B Win 10-3 1454.61 Feb 4th Stanford Open
113 Claremont Loss 5-11 712.42 Feb 5th Stanford Open
111 Washington-B Loss 5-13 718.57 Feb 5th Stanford Open
287 Portland Win 12-2 1143.82 Feb 5th Stanford Open
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)