#48 Temple (5-6)

avg: 1502.96  •  sd: 66.38  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
50 Purdue Loss 11-12 1372.38 Feb 8th Queen City Tune Up 2020 Open
1 North Carolina** Loss 2-13 1730.39 Ignored Feb 8th Queen City Tune Up 2020 Open
73 Carnegie Mellon Win 11-10 1491.46 Feb 8th Queen City Tune Up 2020 Open
92 Duke Win 9-7 1541.78 Feb 9th Queen City Tune Up 2020 Open
194 Kennesaw State** Win 13-1 1458.55 Ignored Feb 29th Easterns Qualifier 2020
91 Indiana Win 13-9 1688.69 Feb 29th Easterns Qualifier 2020
67 Wisconsin-Milwaukee Win 12-6 1970.95 Feb 29th Easterns Qualifier 2020
23 William & Mary Loss 9-13 1369.66 Feb 29th Easterns Qualifier 2020
45 Notre Dame Loss 10-13 1245.43 Mar 1st Easterns Qualifier 2020
24 Vermont Loss 14-15 1658.02 Mar 1st Easterns Qualifier 2020
23 William & Mary Loss 4-15 1188.22 Mar 1st Easterns Qualifier 2020
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)