#166 Virginia Commonwealth (8-12)

avg: 1091.83  •  sd: 71.57  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
91 Mary Washington Loss 11-13 1153.67 Feb 2nd Mid Atlantic Warmup 2019
137 North Carolina-B Win 13-7 1790.69 Feb 2nd Mid Atlantic Warmup 2019
39 Vermont** Loss 4-13 1105.77 Ignored Feb 2nd Mid Atlantic Warmup 2019
110 Williams Loss 11-13 1086.98 Feb 2nd Mid Atlantic Warmup 2019
158 Lehigh Win 15-10 1582.68 Feb 3rd Mid Atlantic Warmup 2019
157 Drexel Loss 13-15 915.23 Feb 3rd Mid Atlantic Warmup 2019
197 George Mason Loss 12-15 700.9 Feb 3rd Mid Atlantic Warmup 2019
171 RIT Loss 6-12 502.34 Feb 23rd Oak Creek Challenge 2019
188 East Carolina Win 8-7 1155.36 Feb 23rd Oak Creek Challenge 2019
278 Christopher Newport Win 8-4 1329.44 Feb 23rd Oak Creek Challenge 2019
206 West Chester Loss 9-10 841.25 Feb 23rd Oak Creek Challenge 2019
301 Salisbury Win 15-5 1253.13 Feb 24th Oak Creek Challenge 2019
248 Shippensburg Loss 12-14 645.38 Feb 24th Oak Creek Challenge 2019
137 North Carolina-B Loss 9-10 1108.15 Feb 24th Oak Creek Challenge 2019
242 Rowan Win 13-6 1486.46 Mar 30th Atlantic Coast Open 2019
114 Liberty Loss 9-12 954.75 Mar 30th Atlantic Coast Open 2019
187 NYU Win 10-8 1293.27 Mar 30th Atlantic Coast Open 2019
195 George Washington Loss 8-10 741.14 Mar 30th Atlantic Coast Open 2019
139 Pennsylvania Win 12-11 1354.67 Mar 31st Atlantic Coast Open 2019
151 SUNY-Binghamton Loss 10-12 924.02 Mar 31st Atlantic Coast Open 2019
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)