#140 Alabama (8-8)

avg: 591.74  •  sd: 87.51  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
115 Union (Tennessee) Win 9-8 880.42 Jan 28th T Town Throwdown1
219 Emory-B** Win 13-1 -212.63 Ignored Jan 28th T Town Throwdown1
168 Jacksonville State Win 10-5 867.17 Jan 28th T Town Throwdown1
129 Emory Loss 5-13 35.12 Jan 29th T Town Throwdown1
105 Alabama-Huntsville Loss 4-10 251.46 Jan 29th T Town Throwdown1
201 Georgia Tech-B** Win 6-2 518.58 Ignored Feb 11th 2023 TOTS The Only Tenn I See
72 Tennessee-Chattanooga Loss 1-11 472.31 Feb 11th 2023 TOTS The Only Tenn I See
56 Georgia Tech** Loss 0-11 626.21 Ignored Feb 11th 2023 TOTS The Only Tenn I See
175 LSU Win 8-7 355.13 Feb 11th 2023 TOTS The Only Tenn I See
56 Georgia Tech** Loss 2-13 626.21 Ignored Feb 12th 2023 TOTS The Only Tenn I See
115 Union (Tennessee) Win 7-4 1251.58 Feb 12th 2023 TOTS The Only Tenn I See
175 LSU Win 10-6 726.29 Feb 25th Mardi Gras XXXV
168 Jacksonville State Win 11-1 893.27 Feb 25th Mardi Gras XXXV
106 Texas State Loss 5-10 265.78 Feb 25th Mardi Gras XXXV
78 Central Florida Loss 3-5 593.97 Feb 26th Mardi Gras XXXV
81 Trinity Loss 3-5 580.06 Feb 26th Mardi Gras XXXV
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)