#221 Bentley (2-6)

avg: 386.51  •  sd: 118.67  •  top 16/20: 0%

Click on a column to sort  • 
# Opponent Result Game Rating Status Date Event
184 Northeastern-B Loss 6-8 319.87 Mar 23rd Live Free and Sky 2019
272 Boston College -B Win 9-2 403.91 Mar 23rd Live Free and Sky 2019
76 Rensselaer Polytech** Loss 3-9 685.87 Ignored Mar 23rd Live Free and Sky 2019
150 Bowdoin Loss 4-8 302.92 Mar 23rd Live Free and Sky 2019
238 Worcester Polytechnic Win 10-4 838.69 Mar 24th Live Free and Sky 2019
33 Bates** Loss 2-13 1106.49 Ignored Mar 24th Live Free and Sky 2019
150 Bowdoin Loss 1-10 267.72 Mar 24th Live Free and Sky 2019
170 Vermont-B Loss 0-7 135.6 Mar 24th Live Free and Sky 2019
**Blowout Eligible

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of it's teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)