Probabilistic Bid Allocation

2017-18 Season

Bid Distribution    Step by Step Allocation    Team Statistics    FAQ

Bid Allocation

Bids Region Total Contributing Teams
2 Great Lakes 1.84 Nemesis 99.30%,   Rival 84.70%,  
1 Mid-Atlantic 1 Scandal 100.00%,  
1 North Central 1.66 Heist 74.40%,   Wicked 73.00%,   Pop 14.90%,   Fusion 3.30%,  
2 Northeast 1.9 Brute Squad 100.00%,   Iris 48.80%,   BENT 20.80%,   Siege 20.50%,  
3 Northwest 2.88 Seattle Riot 100.00%,   Schwa 88.90%,   Traffic 72.00%,   Underground 27.40%,  
2 South Central 1.78 Molly Brown 100.00%,   Showdown 76.20%,   Colorado Small Batch 1.90%,  
2 Southeast 2.17 Phoenix 95.60%,   Ozone 88.10%,   Ripe 33.20%,  
3 Southwest 2.77 Fury 100.00%,   Nightlock 100.00%,   Wildfire 77.00%,  

Allocation Breakdown

Region GL MA NC NE NW SC SE SW
Initial 1.840 1.000 1.656 1.901 2.883 1.781 2.169 2.770
Autos (all @ 1) 0.840 0.000 0.656 0.901 1.883 0.781 1.169 1.770
Northwest (@ 2) 0.840 0.000 0.656 0.901 0.883 0.781 1.169 1.770
Southwest (@ 2) 0.840 0.000 0.656 0.901 0.883 0.781 1.169 0.770
Southeast (@ 2) 0.840 0.000 0.656 0.901 0.883 0.781 0.169 0.770
Northeast (@ 2) 0.840 0.000 0.656 -0.099 0.883 0.781 0.169 0.770
Northwest (@ 3) 0.840 0.000 0.656 -0.099 -0.117 0.781 0.169 0.770
Great Lakes (@ 2) -0.160 0.000 0.656 -0.099 -0.117 0.781 0.169 0.770
South Central (@ 2) -0.160 0.000 0.656 -0.099 -0.117 -0.219 0.169 0.770
Southwest (@ 3) -0.160 0.000 0.656 -0.099 -0.117 -0.219 0.169 -0.230
Total 2 1 1 2 3 2 2 3

Teams Ranked By Bid Fraction

Rank Team Bid Frac Rating Uncertainty High/Low Sim Record
1 Brute Squad 1 2482.39 181.41 1/6 10-0
2 Fury 1 2397.61 85.47 1/5 12-2
3 Seattle Riot 1 2351 76.8 1/5 12-1
4 Molly Brown 1 2288.6 52.07 1/6 10-3
5 Scandal 1 2063.02 55.86 4/9 9-4
6 Nightlock 1 1926.04 49.82 5/14 14-7
7 Nemesis 0.993 1841.73 63.86 5/21 6-7
8 Phoenix 0.956 1841.23 90.46 5/22 9-2
9 Schwa 0.889 1774.77 74.76 6/23 6-8
10 Ozone 0.881 1927.99 204.77 1/31 9-4
11 Rival 0.847 1787.01 97.82 5/24 5-9
12 Wildfire 0.77 1754.06 91.58 5/24 2-4
13 Showdown 0.762 1791.5 153.12 4/28 12-6
14 Heist 0.744 1780.13 154.93 5/32 10-4
15 Wicked 0.73 1746.98 130.92 4/30 13-0
16 Traffic 0.72 1743.16 100.16 6/28 4-3
17 Iris 0.488 1682.42 97.63 6/28 5-3
18 Ripe 0.332 1647.15 87.15 7/27 3-2
19 Underground 0.274 1656.13 37.13 11/24 6-7
20 BENT 0.208 1631.74 67.07 9/28 9-4
21 Siege 0.205 1627.5 65.02 8/29 9-7
22 Pop 0.149 1593.32 89.96 9/31 4-9
23 Fusion 0.033 1524.69 79.91 12/32 3-5
24 Colorado Small Batch 0.019 1528.69 68.02 12/30 9-3
25 Stella 0 1472.1 0 23/28 1-0
26 6ixers 0 1472.1 0 22/27 1-0
27 PPF 0 1395.47 62.66 20/35 5-2
28 LOL 0 1377.31 60.08 20/36 4-10
29 Elevate 0 1355.39 63.88 21/40 10-10
30 Vintage 0 1332.23 52.83 23/37 4-2
31 Virginia Rebellion 0 1288.91 56.59 25/38 16-3
32 Indy Rogue 0 1274.21 81.53 22/43 9-3
33 Tabby Rosa 0 1266.35 64.09 24/43 14-5
34 Grit 0 1260.69 51.63 27/39 3-4
35 Sneaky House Hippos 0 1244.9 89.84 22/46 7-8
36 FAB 0 1165.57 89.05 27/48 7-6
37 Rampage 0 1145.35 118.41 24/56 2-5
38 Jackwagon 0 1040.71 46.12 35/52 7-5
39 Steel 0 1036.21 88.26 31/57 15-2
40 Dish 0 1026.14 97.44 29/57 11-3
41 Seattle Soul 0 1025.82 78.82 34/53 8-5
42 Sparks 0 1009.86 100.94 30/55 5-1
43 Salty 0 979.01 76.77 34/56 3-4
44 Trainwreck 0 948.9 75.72 36/55 3-3
45 Eclipse 0 942.38 72.51 37/57 2-5
46 Deadly Viper Assassination Squad 0 940.76 57.7 36/53 2-4
47 Hot Metal 0 915.47 55.35 37/55 7-6
48 Crackle 0 891.34 82.09 37/57 4-5
49 Frolic 0 885.73 176.01 30/71 10-1
50 Green Means Go 0 872.1 67.5 38/56 9-14
51 Pine Baroness 0 845.36 88.74 37/59 14-4
52 Venus 0 830.8 90.24 37/62 2-5
53 Fiasco 0 825.32 103.79 36/67 7-6
54 Portland Ivy 0 771.73 103.19 36/68 5-2
55 Outbreak 0 729.89 83.22 43/67 10-9
56 Taco Truck 0 695.96 82.55 43/67 4-8
57 Sureshot 0 642.2 47.53 51/65 7-5
58 Venom 0 592.03 81.51 47/70 5-7
59 Stellar 0 577.74 72.8 50/71 6-7
60 Helix 0 562.17 65.55 54/69 10-9
61 Cold Cuts 0 554.66 82.74 53/72 5-8
62 Backhanded 0 542.25 57.52 54/72 6-13
63 Queen Cake 0 538.13 66.41 54/72 6-11
64 Vice 0 525.85 90.87 49/74 12-3
65 Brooklyn Book Club 0 489.25 86.91 54/74 7-13
66 Inferno 0 488.68 110.92 52/76 6-5
67 Maeve 0 468.63 100.45 51/76 4-6
68 Eliza Furnace 0 405.19 66.89 57/74 3-10
69 Seven Devils 0 309.46 31.43 65/77 1-3
70 101 Summertime 0 294.49 98.1 61/80 2-5
71 Lady Forward 0 271.38 85.13 63/81 5-7
72 Iowa Wild Rose 0 257.79 118.57 60/84 2-7
73 Broad City 0 238.01 62.18 65/80 8-7
74 Suffrage 0 198.12 81.92 66/82 7-8
75 Notorious C.L.E. 0 179.94 68.53 67/82 4-8
76 Viva 0 101.19 229.42 49/89 0-5
77 MystiKuE 0 98.48 206.69 54/88 2-4
78 Honey Pot 0 80.89 93.55 68/87 2-16
79 Autonomous 0 12.97 87.44 69/86 2-11
80 Sizzle 0 -59.77 130.49 69/88 1-5
81 cATLanta 0 -61.87 278.52 46/91 1-5
82 PLOW 0 -70.83 79.08 76/87 3-2
83 Koi 0 -73.98 125.76 67/88 0-5
84 Temptress 0 -193.29 290.18 56/91 1-4
85 Boomslang 0 -255.46 68.71 79/89 2-8
86 Salt City Spirit 0 -283.84 142.2 74/90 0-5
87 Cazadora 0 -436.64 343.81 60/91 0-5
88 Frenzy 0 -544.28 193.45 77/91 0-7
89 Orbit 0 -661.87 433.94 66/91 0-6
90 DINO 0 -759.05 164.31 84/91 0-9
91 HOPE 0 -795.21 262.24 75/91 0-5

FAQ

The uncertainty of the mean is equal to the standard deviation of the set of game ratings, divided by the square root of the number of games. We treated a team’s ranking as a normally distributed random variable, with the USAU ranking as the mean and the uncertainty of the ranking as the standard deviation
  1. Calculate uncertainy for USAU ranking averge
  2. Model ranking as a normal distribution around USAU averge with standard deviation equal to uncertainty
  3. Simulate seasons by drawing a rank for each team from their distribution. Note the teams in the top 16 (club) or top 20 (college)
  4. Sum the fractions for each region for how often each of its teams appeared in the top 16 (club) or top 20 (college)
  5. Subtract one from each fraction for "autobids"
  6. Award remainings bids to the regions with the highest remaining fraction, subtracting one from the fraction each time a bid is awarded
There is an article on Ulitworld written by Scott Dunham and I that gives a little more context (though it probably was the thing that linked you here)